nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2018, 02, v.24;No.91 228-236
激光稳频技术的研究及进展
基金项目(Foundation): 国家重点基础研究发展计划(2016YFA0301404);; 重大研究计划(91536222);; 国家自然科学基金(11504217)
邮箱(Email):
DOI:
摘要:

激光稳频技术广泛应用在量子光学和量子通讯的实验系统中,用于提高激光频率的稳定度或改善光学谐振腔的输出稳定性等。本文综述了基于光学谐振腔共振频率的稳频技术如PDH(Pound-Drever-Hall)稳频技术、Lock-in鉴相稳频技术、Tilt-locking稳频技术的研究进展,并在这些稳频技术的基础上,阐述了新型改进和发展的自动激光稳频技术。

Abstract:

The laser frequency stabilization technique is widely used in quantum optics and quantum communication systems,for stabilization of laser frequency and optical cavity length.Based on the stable optical cavity,we studied the related laser frequency stabilization technique,like PDH(Pound-DreverHall),lock-in,tilt-locking technique.Also,the novel automatic laser frequency stabilization technique was discussed.

参考文献

[1]Mueller G,McNamara P,Thorpe I,et al.Laser Frequency Stabilization for Lisa[J].NASA Technical Publication TP-2005-212790,2005.DOI:https:∥ntrs.nasa.gov/search.jsp?R=20060012084.

[2]Ludlow AD,Boyd M M,Ye J,et al.Optical Atomic Clocks[J].Review of Modern Physics,2015,87(2):637-701DOI:https:∥doi.org/10.1103/RevModPhys.87.637.

[3]Drever R W P,Hall J L,Kowalski F V,et al.Laser Phase and Frequency Stabilization Using an Optical Resonator[J],1983,31(2):97-105.DOI:https:∥doi.org/10.1007/BF00702605.

[4]李健,吴令安.相位调制锁定光学谐振腔[J].光学学报,1995,15(12):1641-1645.

[5]兰太和.PDH技术激光稳频特性研究[D].华东师范大学硕士学位论文,2009.DOI:https:∥doi.org/cdmd.cnki.com.cn/Article/CDMD-10269-2009187153.htm.

[6]苑丹丹,胡姝玲,刘宏海,等.激光器稳频技术研究[J].激光与光电子学进展,2011,48(8):1401-5DOI:https:∥wenku.baidu.com/view/ef6ab186ec3a87c24028c46e.html.

[7]Whittaker E A,Gehrtz M,Bjorklund G C.Residual Amplitude Modulation in Laser Electro-optic Phase Modulation[J].JOpt Soc Am B,1985,2:1320-1326.DOI:https:∥www.osapublishing.org/abstract.cfm?uri=josab-2-8-132.

[8]Whittaker E A,et al.Reduction of Residual Amplitude Modulation in Frequency-modulation Spectroscopy by Using Harmonic Frequency Modulation[J].J Opt Soc Am B,1988,5:1253-1256.DOI:https:∥www.osapublishing.org/abstract.cfm?uri=josab-5-6-1253.

[9]Zhang W,Martin M J,Benko C,et al.Reduction of Residual Amplitude Modulation to 1×10-6 for Frequency Modulation and Laser Stabilization[J].Opt Lett,2014,39(7):1980-1983.DOI:https:∥doi.org/10.1364/OL.39.001980.

[10]Li Liufeng,Liu Fang,Wang Chun,et al.Measurement and Control of Residual Amplitude Modulation in Optical Phase Modulation[J].Rev Sci Instrum,2012,83:04311.DOI:https:∥doi.org/10.1063/1.4704084.

[11]Tai Z Y,Yan L L,Zhang Y Y,et al.Electro-optic Modulator with Ultra-low Residual Amplitude Modulation for Frequency Modulation and Laser Stabilization[J].Opt Lett,2016,41(23):5584-5587.DOI:https:∥doi.org/10.1364/OL.41.005584.

[12]Young B C,Cruz F C,Itano W M,et al.Visible Lasers with Subhertz Linewidths[J].Phys Rev Lett,1999,82(82):3799-3802.DOI:https:∥doi.org/10.1103/PhysRevLett.82.3799.

[13]Notcutt M,et al.Simple and Compact 1 Hz Laser System Via an Improved Mounting Configuration of a Reference Cavity[J].Opt Lett,2005,30:1815-1817.DOI:https:∥doi.org/10.1364/OL.30.001815.

[14]Chen L,Hall J L,Ye J,et al.Vibration-induced Elastic Deformation of Fabry-Perot Cavities[J].Phys Rev A,2006,30(5):150-150.DOI:https:∥doi.org/10.1103/PhysRevA.74.053801.

[15]Dai X J,Jiang Y Y,Hang C,et al.Thermal Analysis of Optical Reference Cavities for Low Sensitivity to Environmental Temperature Fluctuations[J].Opt Express,2015,23(4):513.DOI:https:∥doi.org/10.1364/OE.23.0051344.

[16]Alnis J,Matveev A,Kolachevsky N,et al.Subhertz Linewidth Diode Lasers by Stabilization to Vibrationally and Thermally Compensated Ultralow-expansion Glass Fabry-Pérot cavities[J].Phys Rev A,2008,77:053809.DOI:https:∥doi.org/10.11 03/Phy s Rev A.77.053809.

[17]Kessler T,Hagemann C,Grebing C,et al.A Sub-40-mHz-linewidth Laser Based on a Silicon Single-crystal Optical Cavity[J].Nature Photonics,2012,6(10):687-692.DOI:https:∥doi.org/10.1038/nphoton.2012.217.

[18]Matei D G,Legero T,Hfner S,et al.1.5μm Lasers with Sub-10 mHz Linewidth[J].Phys Rev Lett,2017,118:263202.DOI:https:∥doi.org/10.1103/PhysRevLett.118.263202.

[19]Chen H Q,Jiang Y Y,Fang S,et al.Frequency Stabilization of Nd:YAG Lasers with a Most Probable Linewidth of0.6 Hz[J].J Opt Soc Am B,2013,30(6):1546-1550.DOI:https:∥doi.org/10.1364/JOSAB.30.001546.

[20]Bian W,Huang Y,Guan H,et al.1 Hz Linewidth Ti:sapphire Laser as Local Oscillator for(40)Ca(+)Optical Clocks[J].Rev Sci Instrum,2016,87(6):06300.DOI:http:∥dx.doi.org/10.1063/1.49547291.

[21]Wu Lifei,Jiang Yanyi,Ma Chaoqun,et al.0.26-Hz-linewidth Ultrastable Lasers at 1 557nm[J].Scientific Reports,2016,6:24969.DOI:https:∥doi.org/10.1038/srep24969.

[22]Feng J X,Wan Z J,Li Y J,et al.Generation of 8.3 dB Continuous Variable Quantum Entanglement at a Telecommunication Wavelength of 1 550nm[J].Laser Phys Lett,2018,15(1):015209.DOI:https:∥doi.org/10.1088/1612-202X/aa9825.

[23]Deng X W,Xiang Y,Tian C X,et al.Demonstration of Monogamy Relations for Einstein-Podolsky-Rosen Steering in Gaussian Cluster States[J].Phys Rev Lett,2017,118(23):230501.DOI:https:∥doi.org/10.1103/PhysRev Lett.118.230501.

[24]Weel M,Kumarakrishnan A.Laser-frequency Stabilization Using a Lock-in Amplifier[J].Can J Phys,2002,80:1449-1458.DOI:https:∥doi.org/10.1139/P02-084.

[25]Shaddock D A,Gray M B,McClelland D E.Frequency Locking a Laser to an Optical Cavity by Use of Spatial Mode Interference[J].Opt Lett,1999,24(21):1499-1501.DOI:https:∥do i.org/10.1364/OL.24.001499.

[26]Slagmolen B J J,Shaddock D A,Gray M B,et al.Frequency Stability of Spatial Mode Interference(Tilt)Locking[J].IEEE J Quantum Electron,2002,38(11):1521-1528.DOI:https:∥doi.org/10.1109/JQE.2002.804267.

[27]Michael D Harvey,Andrew G White.Frequency Locking by Analysis of Orthogonal Modes[J].Opt Commun,2003,221:163-171.DOI:https:∥doi.org/10.1016/S0030-4018(03)01425-1.

[28]Grady J Koch.Automatic Laser Frequency Locking to Gas Absorption Lines[J].Opt Eng,2003,42(6):1690-1693.DOI:https:∥doi.org/10.1117/1.1572887.

[29]刘建丽,王鹏军.一种自动激光稳频装置及方法[P].发明专利,专利号CN 104409960A.

[30]Josef Lazar,Ond rˇej Cˇíp.Electronics for He-Ne-I2Stabilized Laser with Digital Control[J].Rev Sci Instrum,1997,68(10):3660-3365.DOI:https://doi.org/10.1063/1.1148004.

[31]Timothy T Y Lam,Bram J J Slagmolen,Jong H Chow,et al.Digital Laser Frequency Stabilization Using an Optical Cavity[J].IEEE J Quantum Electron,2010,46(8):1178-1183.DOI:https:∥doi.org/10.1109/JQE.2010.2044867.

[32]Dong Lei,Yin Wangbao,Ma Weiguang,et al.A Novel Control System for Automatically Locking a Diode Laser Frequency to a Selected Gas Absorption Line[J].Meas Sci Technol,2007,18:1447-1452.DOI:https:∥doi.org/10.1088/0957-0233/18/5/033.

[33]Sparkes B M,Chrzanowski H M,Parrain D P,et al.A Scalable,Self-analyzing Digital Locking System for Use on Quantum Optics Experiments[J].Rev Sci Instrum,2011,82(7):075113.DOI:https:∥doi.org/10.1063/1.3610455.

[34]Luo Yingxin,Li Hongyin,Hsien-Chi Yeh.Note:Digital Laser Frequency Auto-locking for Inter-satellite Laser Ranging[J].Rev Sci Instrum,2016,87(5):056105.DOI:https:∥doi.org/10.1063/1.4950862.

[35]Khalaidovski A.Beyond the Quantum Limit-A Squeezed-Light Laser in GEO600[J].PhD Thesis,2011.DOI:http:∥hdl.handle.net/11858/00-001M-0000-000E-B176-6.

基本信息:

DOI:

中图分类号:TN24

引用信息:

[1]刘志强,刘建丽,翟泽辉.激光稳频技术的研究及进展[J].量子光学学报,2018,24(02):228-236.

基金信息:

国家重点基础研究发展计划(2016YFA0301404);; 重大研究计划(91536222);; 国家自然科学基金(11504217)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文